What are the causes of hyperkalemia?

Written by Chen Li Ping
Endocrinology
Updated on February 10, 2025
00:00
00:00

The first reason is the excessive intake or administration of potassium, which can lead to hyperkalemia. For example, consuming foods that are very rich in potassium, or intravenously infusing solutions containing potassium. Additionally, the use of potassium salts of penicillin can also cause hyperkalemia, as well as the transfusion of stored blood, which can easily lead to hyperkalemia.

Besides excessive intake and administration of potassium, diseases related to reduced excretion can also cause hyperkalemia, such as the most common instances during acute or chronic renal failure, where patients are prone to hyperkalemia.

Furthermore, patients with reduced adrenal cortex function, such as aldosterone deficiency or Addison's disease, are also prone to hyperkalemia. Additionally, the use of diuretics that inhibit potassium excretion, notably spironolactone—a potassium-sparing diuretic—can also cause an increase in blood potassium levels.

Another reason is a change in potassium distribution, such as when potassium moves from inside the cells to the outside, which can easily lead to hyperkalemia. This is common in cases of tissue damage, such as muscle contusion, or electrical burns, and tissue hypoxia, which also can easily lead to a change in potassium distribution, causing an increase in extracellular potassium.

If hemolysis occurs in a test tube, such as if the venipuncture takes too long, or in conditions like leukocytosis or severe shaking of the blood sample, these might also lead to hyperkalemia.

(The use of medications should be under the guidance of a doctor.)

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
34sec home-news-image

Does hyperkalemia cause a fast or slow heart rate?

Hyperkalemia often causes a slowed heart rate and is associated with various arrhythmias. When serum potassium is between 6.6 to 8.0 mmol/L, tented T-waves may be observed. When serum potassium levels rise rapidly, it can lead to ventricular tachycardia or even ventricular fibrillation. On the other hand, a slow increase in serum potassium can cause conduction blocks, and in severe cases, may lead to cardiac arrest. These are the heart rate changes caused by hyperkalemia, which typically result in a slower heart rate.

doctor image
home-news-image
Written by Luo Han Ying
Endocrinology
1min 12sec home-news-image

What should not be eaten with hyperkalemia?

Potassium is an important element in human blood. Typically, the electrolytes we measure in blood tests include sodium, potassium, chloride, and calcium. Both low and high levels of potassium can have adverse effects on the body, especially hyperkalemia, which can cause sudden cardiac arrest and is considered dangerous in clinical settings. Patients with normal kidney function are less likely to develop hyperkalemia, which is more commonly seen in those who may have consumed Chinese herbal medicines containing high amounts of potassium for a long time. In patients with renal insufficiency, due to impaired kidney excretory function, hyperkalemia occurs more easily. Patients with hyperkalemia should generally avoid ACE inhibitors and ARB medications. For example, drugs like ACE inhibitors and spironolactone can further exacerbate hyperkalemia, so these types of medications are definitely not advisable. (The use of medications should be under the guidance of a professional doctor.)

doctor image
home-news-image
Written by Luo Juan
Endocrinology
1min home-news-image

What should be noted in the diet for hyperkalemia?

In cases of hyperkalemia, it is important to avoid eating foods high in potassium, such as corn, lettuce, carp, eel, lamb, beef, pork, as well as dates, bananas, and others. These foods are rich in potassium and should be consumed less or not at all. Additionally, a diet high in sugar and fat should be provided, or some intravenous nutrition may be used, to ensure sufficient caloric intake and prevent the release of potassium from metabolic breakdown, which could lead to an increase in blood potassium levels. Also, it is important to avoid certain medications high in potassium, such as traditional Chinese medicines. (Medication use should be under the guidance of a professional doctor.)

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
1min 27sec home-news-image

Principles of treatment for hyperkalemia

First, to counteract the cardiac inhibitory effects of potassium, calcium salts can be injected, and sodium bicarbonate can be used to alkalinize the blood. Then, an infusion of hypertonic glucose and insulin can be administered to promote the internal movement of potassium ions. Secondly, to promote the excretion of potassium, diuretics can be used. The second method involves the use of cation exchange resins and sorbitol. The third method employs dialysis therapy, which can include both hemodialysis and peritoneal dialysis. The fourth method is to reduce the sources of potassium, stop a high potassium diet or the use of potassium-containing drugs. In cases of severe hyperkalemia, where there is a life-threatening emergency, urgent measures should be taken, primarily the intravenous administration of calcium ion antagonists to counteract the cardiac toxicity of potassium. In cases of severe arrhythmias or even cardiac arrest, emergency installation of a pacemaker or defibrillation can be carried out, and respiratory muscle paralysis may require ventilatory support. (Medication use should be under the guidance of a doctor)

doctor image
home-news-image
Written by Zhang Jun Jun
Endocrinology
1min 36sec home-news-image

Can hyperkalemia be cured?

Hyperkalemia is treatable. The first cause of hyperkalemia is an excess of potassium, mainly seen in reduced renal excretion and excessive potassium intake, such as the infusion of a large volume of stored blood. In this case, diuretics can be used to increase the excretion of potassium. For cases of excessive potassium intake and excessive transfusion of stored blood, treatment options include diuresis and the use of glucose with insulin to lower potassium levels, or even treatment with sodium bicarbonate. In cases of shift hyperkalemia, primarily seen in hemolysis and septic shock, dialysis can be used to reduce hyperkalemia while simultaneously treating the underlying disease. The third type is concentration hyperkalemia and severe hemorrhagic shock, which causes a reduction in blood volume leading to blood concentration and relative hyperkalemia. Treatment of the primary disease first is advisable, and typically, the high blood potassium can self-correct after the primary disease is cured. There is also a condition known as pseudohyperkalemia, for example, prolonged storage of drawn blood can cause hemolysis within the tube, poor venipuncture technique, thrombocytosis, and leukocytosis can all lead to pseudo-hyperkalemia. In these cases, re-drawing blood multiple times to verify the potassium levels can address this issue. Therefore, hyperkalemia is treatable.