What are the symptoms of hyperkalemia?

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 23, 2024
00:00
00:00

Mild hyperkalemia can affect muscle tissues, causing mild muscle tremors, while severe hyperkalemia may reduce the excitability of neuromuscular functions, leading to weakness and even flaccid paralysis in the limbs. Hyperkalemia can also impact the heart, mainly resulting in decreased myocardial excitability, decreased myocardial conductivity, and decreased myocardial automaticity. The effects on the electrocardiogram (ECG) primarily manifest as low and widened P waves, widened QS complexes, decreased R waves, and elevated T waves. Regarding myocardial contractility, hyperkalemia mainly causes a decrease in contractility and can lead to metabolic acidosis.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
42sec home-news-image

The effects of hyperkalemia on the body

Hyperkalemia affects the body mainly in three aspects. Firstly, hyperkalemia impacts muscle tissues, clinically manifesting as symptoms such as muscle tremors. Secondly, the effect of hyperkalemia on the heart primarily manifests as decreased excitability, conductivity, and automaticity of the myocardium. It affects electrocardiograms, characterized by a depressed P wave, widened QS wave, reduced R wave, and elevated T wave. Thirdly, hyperkalemia affects acid-base balance; during hyperkalemia, potassium efflux from cells can lead to metabolic acidosis, resulting in alkaline urine.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
1min 24sec home-news-image

Causes of hyperkalemia

The causes of hyperkalemia may include: First, excessive intake, such as consuming too much high-potassium food, medications with high potassium content, including some traditional Chinese medicines, potassium penicillin, stored blood, and excessive potassium supplementation. Second, it could be due to decreased potassium excretion by the kidneys. When renal insufficiency, acute or chronic renal failure occurs, it is often accompanied by severe hyperkalemia. Third, there is also decreased potassium secretion by renal tubules. When there is a deficiency of corticosteroids, there can be degenerative, asymptomatic hyperkalemia. Hyperkalemia can also occur when renal tubules are insensitive to aldosterone. Fourth, medications that reduce potassium excretion, such as the use of potassium-sparing diuretics, angiotensin-converting enzyme inhibitors, other nonsteroidal anti-inflammatory drugs, cyclosporine, etc., can also cause hyperkalemia. Fifth, the shift of potassium from inside the cells to the extracellular fluid, which can be caused by tissue damage, hypoxia, or the use of certain medications, leading to hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Causes of Hyperkalemia

Common causes of hyperkalemia in clinical settings include: First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired. Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia. Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
49sec home-news-image

What are the symptoms of hyperkalemia?

The effects of hyperkalemia on the body mainly include the following aspects: First, the impact on muscle tissue: mild hyperkalemia can cause slight tremors in muscles. If the potassium levels continue to rise, this can lead to decreased neuromuscular excitability, resulting in limbs becoming weak and flaccid, and even leading to delayed paralysis. Second, the impact on the cardiac system: it can cause a decrease in myocardial excitability, conductibility, and automaticity. The electrocardiogram shows a depressed P wave, widened QRS complex, shortened QT interval, and peaked T waves. Third, hyperkalemia affects acid-base balance and can lead to metabolic acidosis during hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

How to rescue hyperkalemia

Hyperkalemia must be dealt with immediately once it occurs. The usual treatments in clinical settings include promoting potassium excretion using furosemide or other loop diuretics to maximize renal potassium excretion, or using oral or rectal potassium-eliminating agents. For life-threatening hyperkalemia with serum potassium levels greater than 6.5 mmol/L, hemodialysis is necessary. Another approach is to facilitate the shift of potassium into cells, which is done through the administration of insulin with glucose, or sodium bicarbonate along with calcium gluconate that helps protect the myocardium, thus providing treatment and protective measures for hyperkalemia.