Causes of Hyperkalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on February 06, 2025
00:00
00:00

Common causes of hyperkalemia in clinical settings include:

First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired.

Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia.

Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
57sec home-news-image

Hyperkalemia can be seen in which diseases?

Hyperkalemia is a condition where the serum potassium concentration exceeds 5.5 millimoles per liter. Common causes include excessive intake of potassium, such as high-dose potassium penicillin intravenous infusion, ingestion of potassium-containing medications, or transfusion of large amounts of stored blood, all of which can lead to hyperkalemia. Additionally, patients with renal failure who experience oliguria or anuria may have reduced potassium excretion. In such cases, inappropriate potassium supplementation or the use of potassium-sparing diuretics can lead to severe hyperkalemia. Lastly, the movement of potassium from inside the cells—during metabolic acidosis and respiratory acidosis—causes ion exchange, leading to hydrogen ions entering the cells while potassium ions leak out, resulting in hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
56sec home-news-image

How should hyperkalemia be managed?

First, it is necessary to assess the severity of the hyperkalemia, whether it is mild, moderate, or severe. For mild hyperkalemia, it can be managed by taking oral diuretics or intravenous infusion of glucose with insulin, which can normalize the potassium level. In cases of severe hyperkalemia, where blood potassium exceeds 7.5 mmol/L, there is a risk of causing cardiac arrest. Emergency measures to promote potassium excretion are required, such as hemodialysis or peritoneal dialysis. It is also necessary to counteract the myocardial depressive effects of potassium, which can be managed with the injection of calcium gluconate, along with the intravenous infusion of hypertonic glucose and insulin. (The use of medications should be conducted under the guidance of a doctor.)

doctor image
home-news-image
Written by Gan Jun
Endocrinology
1min 6sec home-news-image

What are the changes in urine output in hyperkalemia?

When patients experience hyperkalemia, urine output generally decreases, leading to reduced potassium excretion by the kidneys, typically accompanied by abnormal kidney function. Thus, as long as kidney function is normal and daily urine output exceeds 500 milliliters, hyperkalemia is usually rare. Some causes of reduced renal potassium excretion include decreased glomerular filtration rates and reduced potassium secretion by the renal tubules, commonly seen in acute and chronic renal failure, adrenal cortex insufficiency, low renin, low aldosterone blood conditions, renal tubular acidosis, and long-term use of diuretics, especially potassium-sparing diuretics. Additionally, β-adrenergic tissue agents and angiotensin-converting enzyme inhibitors can cause drug-induced hyperkalemia, leading to abnormal kidney function and, consequently, decreased potassium excretion by the kidneys, ultimately resulting in reduced urine output.

doctor image
home-news-image
Written by Tang Zhuo
Endocrinology
1min 28sec home-news-image

Hyperkalemia is seen in which diseases?

When serum potassium levels exceed 5.5 millimoles per liter, it is referred to as hyperkalemia. Elevated serum potassium does not reflect an overall increase in body potassium, but due to limitations in testing methods, the clinical diagnosis of hyperkalemia still relies on combining serum potassium levels with electrocardiogram history. The causes of hyperkalemia are complex and commonly include: First, decreased renal potassium excretion, seen in acute kidney failure or insufficiency in adrenal cortical hormone synthesis and secretion, or long-term use of potassium-sparing diuretics; Second, shifts of potassium from inside the cells, often due to hemolysis, tissue damage, large-scale necrosis of tumors and inflammatory cells, shock, burns, excessive muscle contractions, acidosis, or injection of hypertonic saline or mannitol, which causes dehydration inside cells and leads to potassium leakage, resulting in hyperkalemia; Third, excessive intake of potassium-containing medications, such as high doses of potassium penicillin; Fourth, transfusion of stored blood can lead to hyperkalemia; Fifth, digitalis poisoning can cause hyperkalemia.