Causes of hyperkalemia

Written by Zhao Xin Lan
Endocrinology
Updated on March 27, 2025
00:00
00:00

The causes of hyperkalemia may include:

First, excessive intake, such as consuming too much high-potassium food, medications with high potassium content, including some traditional Chinese medicines, potassium penicillin, stored blood, and excessive potassium supplementation.

Second, it could be due to decreased potassium excretion by the kidneys. When renal insufficiency, acute or chronic renal failure occurs, it is often accompanied by severe hyperkalemia.

Third, there is also decreased potassium secretion by renal tubules. When there is a deficiency of corticosteroids, there can be degenerative, asymptomatic hyperkalemia. Hyperkalemia can also occur when renal tubules are insensitive to aldosterone.

Fourth, medications that reduce potassium excretion, such as the use of potassium-sparing diuretics, angiotensin-converting enzyme inhibitors, other nonsteroidal anti-inflammatory drugs, cyclosporine, etc., can also cause hyperkalemia.

Fifth, the shift of potassium from inside the cells to the extracellular fluid, which can be caused by tissue damage, hypoxia, or the use of certain medications, leading to hyperkalemia.

Other Voices

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
35sec home-news-image

Why is calcium used for hyperkalemia?

Hyperkalemia can increase the excitability of myocardial cells, leading to various malignant arrhythmias and even sudden death. Immediate treatment is necessary after hyperkalemia occurs. Clinically, it can be treated by hemodialysis or conservatively with medication. Why use calcium preparations for hyperkalemia? Because after using calcium preparations, the excitability of myocardial cells can be stabilized, effectively maintaining stable heart rates in patients and preventing sudden death due to malignant arrhythmias.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 31sec home-news-image

The difference between hyperkalemia and hypokalemia.

Hypokalemia refers to a serum potassium concentration lower than 3.5mmol/L, and its clinical manifestations are diverse. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. Mild hypokalemia shows on an electrocardiogram as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias, such as torsades de pointes and ventricular fibrillation. In terms of the neuromuscular system, the most prominent symptom of hypokalemia is the loss of tone in smooth muscles and flaccid paralysis in skeletal muscles, which, when involving respiratory muscles, can lead to respiratory failure. Hyperkalemia, on the other hand, refers to a serum potassium concentration exceeding 5.5mmol/L, mainly presenting clinical symptoms in cardiac and neuromuscular conduction. Severe cases can cause bradycardia, atrioventricular conduction block, and even sinus arrest. Mild hyperkalemia, with levels between 5.5 to 6.0mmol/L, shows on an electrocardiogram as peaked T waves. As hyperkalemia continues to increase, it can lead to lengthening of the PR interval or disappearance of the P wave, QRS widening, and eventually cardiac arrest. Regarding the neuromuscular system, the clinical manifestations of hyperkalemia are very similar to those of hypokalemia, including weakness and paralysis of skeletal and smooth muscles.

doctor image
home-news-image
Written by Gan Jun
Endocrinology
59sec home-news-image

How to treat vomiting caused by hyperkalemia?

For patients with hyperkalemia, early symptoms include numbness in the limbs, weakness, muscle soreness, and paralysis. As the condition progresses, it can suppress myocardial function, reducing the tension of the myocardium and leading to slow heartbeats, and even cause arrhythmias and cardiac arrest. Increased release of acetylcholine can also cause nausea, vomiting, abdominal pain, and other symptoms. Patients with this condition generally also exhibit symptoms of hyperlipidemia and metabolic acidosis. For mild cases of hyperkalemia, temporary treatment may not be necessary, and symptomatic treatment such as stopping vomiting and drinking water may be sufficient. However, in acute cases, it is recommended that the patient immediately undergo dialysis or receive diuretic injections to rapidly eliminate potassium ions from the body, and to stop consuming foods and medications that contain potassium.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
50sec home-news-image

Is hyperkalemia acidosis?

Hyperkalemia is not acidosis, but during acidosis, the hydrogen ions of the gastric fluid within cells enter the cells, causing the potassium ions inside the cells to move to the extracellular fluid, resulting in hyperkalemia. Clinically, it is commonly seen in organic acidosis, lactic acidosis, diabetic ketoacidosis, and acute renal failure causing acidosis. Once hyperkalemia occurs and is diagnosed, immediate treatment should be administered. First, the primary disease should be treated; next, serum potassium should be reduced. In particularly severe cases, bedside hemofiltration can be administered, and the cardiotoxic effects of hyperkalemia should be mitigated.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
57sec home-news-image

Hyperkalemia can be seen in which diseases?

Hyperkalemia is a condition where the serum potassium concentration exceeds 5.5 millimoles per liter. Common causes include excessive intake of potassium, such as high-dose potassium penicillin intravenous infusion, ingestion of potassium-containing medications, or transfusion of large amounts of stored blood, all of which can lead to hyperkalemia. Additionally, patients with renal failure who experience oliguria or anuria may have reduced potassium excretion. In such cases, inappropriate potassium supplementation or the use of potassium-sparing diuretics can lead to severe hyperkalemia. Lastly, the movement of potassium from inside the cells—during metabolic acidosis and respiratory acidosis—causes ion exchange, leading to hydrogen ions entering the cells while potassium ions leak out, resulting in hyperkalemia.