The effects of hyperkalemia on the body

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 02, 2024
00:00
00:00

Hyperkalemia affects the body mainly in three aspects.

Firstly, hyperkalemia impacts muscle tissues, clinically manifesting as symptoms such as muscle tremors.

Secondly, the effect of hyperkalemia on the heart primarily manifests as decreased excitability, conductivity, and automaticity of the myocardium. It affects electrocardiograms, characterized by a depressed P wave, widened QS wave, reduced R wave, and elevated T wave.

Thirdly, hyperkalemia affects acid-base balance; during hyperkalemia, potassium efflux from cells can lead to metabolic acidosis, resulting in alkaline urine.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
56sec home-news-image

How should hyperkalemia be managed?

First, it is necessary to assess the severity of the hyperkalemia, whether it is mild, moderate, or severe. For mild hyperkalemia, it can be managed by taking oral diuretics or intravenous infusion of glucose with insulin, which can normalize the potassium level. In cases of severe hyperkalemia, where blood potassium exceeds 7.5 mmol/L, there is a risk of causing cardiac arrest. Emergency measures to promote potassium excretion are required, such as hemodialysis or peritoneal dialysis. It is also necessary to counteract the myocardial depressive effects of potassium, which can be managed with the injection of calcium gluconate, along with the intravenous infusion of hypertonic glucose and insulin. (The use of medications should be conducted under the guidance of a doctor.)

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
35sec home-news-image

Why is calcium used for hyperkalemia?

Hyperkalemia can increase the excitability of myocardial cells, leading to various malignant arrhythmias and even sudden death. Immediate treatment is necessary after hyperkalemia occurs. Clinically, it can be treated by hemodialysis or conservatively with medication. Why use calcium preparations for hyperkalemia? Because after using calcium preparations, the excitability of myocardial cells can be stabilized, effectively maintaining stable heart rates in patients and preventing sudden death due to malignant arrhythmias.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
49sec home-news-image

How is hyperkalemia treated?

Hyperkalemia must be handled immediately after it occurs, otherwise it can cause malignant arrhythmias and even endanger life. The first step is to stop potassium supplements, such as potassium chloride sustained-release tablets; the second step is to stop potassium-sparing diuretics, such as spironolactone and other drugs. We can administer calcium intravenously to antagonize the toxic effects of high potassium on the heart. Additionally, we can use high glucose with insulin and intravenously drip sodium bicarbonate, which can promote the movement of potassium into cells. We can also use diuretics to excrete potassium through urine. If the treatment effect is poor after medication, we can use bedside hemodialysis to reduce blood potassium.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
50sec home-news-image

Is hyperkalemia acidosis?

Hyperkalemia is not acidosis, but during acidosis, the hydrogen ions of the gastric fluid within cells enter the cells, causing the potassium ions inside the cells to move to the extracellular fluid, resulting in hyperkalemia. Clinically, it is commonly seen in organic acidosis, lactic acidosis, diabetic ketoacidosis, and acute renal failure causing acidosis. Once hyperkalemia occurs and is diagnosed, immediate treatment should be administered. First, the primary disease should be treated; next, serum potassium should be reduced. In particularly severe cases, bedside hemofiltration can be administered, and the cardiotoxic effects of hyperkalemia should be mitigated.