Treatment of Hyperkalemia with Drugs

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 01, 2024
00:00
00:00

Hyperkalemia primarily affects the conduction of the heart and muscle nerves, with typical clinical manifestations including severe bradycardia, atrioventricular block, and even sinus arrest. Once hyperkalemia occurs clinically, immediate treatment should be administered. The first approach to treatment is promoting the excretion of potassium, using furosemide or other diuretics to increase renal potassium excretion, and taking a small dose of sodium polystyrene sulfonate orally to eliminate potassium. For life-threatening severe hyperkalemia, if serum potassium is greater than 6.5 mmol/L, hemodialysis treatment is necessary. The second aspect involves shifting potassium into cells, using calcium to alter cell excitability, which can protect the heart from the damage to the conduction system caused by hyperkalemia. Additionally, using glucose with insulin and administering sodium bicarbonate can be effective. It is important to note that all the above medications should be used under the guidance of a doctor.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 5sec home-news-image

Treatment of Hyperkalemia with Drugs

Hyperkalemia primarily affects the conduction of the heart and muscle nerves, with typical clinical manifestations including severe bradycardia, atrioventricular block, and even sinus arrest. Once hyperkalemia occurs clinically, immediate treatment should be administered. The first approach to treatment is promoting the excretion of potassium, using furosemide or other diuretics to increase renal potassium excretion, and taking a small dose of sodium polystyrene sulfonate orally to eliminate potassium. For life-threatening severe hyperkalemia, if serum potassium is greater than 6.5 mmol/L, hemodialysis treatment is necessary. The second aspect involves shifting potassium into cells, using calcium to alter cell excitability, which can protect the heart from the damage to the conduction system caused by hyperkalemia. Additionally, using glucose with insulin and administering sodium bicarbonate can be effective. It is important to note that all the above medications should be used under the guidance of a doctor.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
46sec home-news-image

What are the symptoms of hyperkalemia?

Mild hyperkalemia can affect muscle tissues, causing mild muscle tremors, while severe hyperkalemia may reduce the excitability of neuromuscular functions, leading to weakness and even flaccid paralysis in the limbs. Hyperkalemia can also impact the heart, mainly resulting in decreased myocardial excitability, decreased myocardial conductivity, and decreased myocardial automaticity. The effects on the electrocardiogram (ECG) primarily manifest as low and widened P waves, widened QS complexes, decreased R waves, and elevated T waves. Regarding myocardial contractility, hyperkalemia mainly causes a decrease in contractility and can lead to metabolic acidosis.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 2sec home-news-image

The difference between hyperkalemia and hypokalemia

Potassium ions are one of the essential electrolytes necessary for human life. Their physiological functions include maintaining cell metabolism, regulating osmotic pressure and acid-base balance, and preserving cell emergency functions, among others. The normal concentration of serum potassium is between 3.5 and 5.5 millimoles per liter. If it falls below 3.5 millimoles per liter, it is categorized as hypokalemia. If it exceeds 5.5 millimoles per liter, it is categorized as hyperkalemia. Common causes of hypokalemia include insufficient potassium intake, excessive potassium excretion, and the shifting of potassium from outside to inside the cells. The main causes of hyperkalemia include increased intake or reduced excretion of potassium, as well as substantial movement of potassium from inside the cells to the outside. Whenever hyperkalemia or hypokalemia occurs, it should be actively managed.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 31sec home-news-image

The difference between hyperkalemia and hypokalemia.

Hypokalemia refers to a serum potassium concentration lower than 3.5mmol/L, and its clinical manifestations are diverse. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. Mild hypokalemia shows on an electrocardiogram as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias, such as torsades de pointes and ventricular fibrillation. In terms of the neuromuscular system, the most prominent symptom of hypokalemia is the loss of tone in smooth muscles and flaccid paralysis in skeletal muscles, which, when involving respiratory muscles, can lead to respiratory failure. Hyperkalemia, on the other hand, refers to a serum potassium concentration exceeding 5.5mmol/L, mainly presenting clinical symptoms in cardiac and neuromuscular conduction. Severe cases can cause bradycardia, atrioventricular conduction block, and even sinus arrest. Mild hyperkalemia, with levels between 5.5 to 6.0mmol/L, shows on an electrocardiogram as peaked T waves. As hyperkalemia continues to increase, it can lead to lengthening of the PR interval or disappearance of the P wave, QRS widening, and eventually cardiac arrest. Regarding the neuromuscular system, the clinical manifestations of hyperkalemia are very similar to those of hypokalemia, including weakness and paralysis of skeletal and smooth muscles.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
50sec home-news-image

Is hyperkalemia acidosis?

Hyperkalemia is not acidosis, but during acidosis, the hydrogen ions of the gastric fluid within cells enter the cells, causing the potassium ions inside the cells to move to the extracellular fluid, resulting in hyperkalemia. Clinically, it is commonly seen in organic acidosis, lactic acidosis, diabetic ketoacidosis, and acute renal failure causing acidosis. Once hyperkalemia occurs and is diagnosed, immediate treatment should be administered. First, the primary disease should be treated; next, serum potassium should be reduced. In particularly severe cases, bedside hemofiltration can be administered, and the cardiotoxic effects of hyperkalemia should be mitigated.