The effect of hyperkalemia on the myocardium

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 01, 2024
00:00
00:00

The primary mechanism by which hyperkalemia causes arrhythmias is due to dysfunction of myocardial conduction, which is also related to various other factors such as other myocardial lesions, failure, and ionic states. The main impact on the myocardium is on its excitability; myocardial excitability can decrease or even disappear, and its conductivity is also affected, causing a reduction in conductivity. The effect on myocardial automaticity is a decrease in automaticity. Electrocardiographically, there are manifestations such as a low P wave, prolonged PR interval, and widened QRS complex without disappearance; these are some of the presentations of hyperkalemia.

Other Voices

doctor image
home-news-image
Written by Luo Juan
Endocrinology
1min home-news-image

What should be noted in the diet for hyperkalemia?

In cases of hyperkalemia, it is important to avoid eating foods high in potassium, such as corn, lettuce, carp, eel, lamb, beef, pork, as well as dates, bananas, and others. These foods are rich in potassium and should be consumed less or not at all. Additionally, a diet high in sugar and fat should be provided, or some intravenous nutrition may be used, to ensure sufficient caloric intake and prevent the release of potassium from metabolic breakdown, which could lead to an increase in blood potassium levels. Also, it is important to avoid certain medications high in potassium, such as traditional Chinese medicines. (Medication use should be under the guidance of a professional doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
34sec home-news-image

Does hyperkalemia cause a fast or slow heart rate?

Hyperkalemia often causes a slowed heart rate and is associated with various arrhythmias. When serum potassium is between 6.6 to 8.0 mmol/L, tented T-waves may be observed. When serum potassium levels rise rapidly, it can lead to ventricular tachycardia or even ventricular fibrillation. On the other hand, a slow increase in serum potassium can cause conduction blocks, and in severe cases, may lead to cardiac arrest. These are the heart rate changes caused by hyperkalemia, which typically result in a slower heart rate.

doctor image
home-news-image
Written by Luo Han Ying
Endocrinology
1min 12sec home-news-image

What should not be eaten with hyperkalemia?

Potassium is an important element in human blood. Typically, the electrolytes we measure in blood tests include sodium, potassium, chloride, and calcium. Both low and high levels of potassium can have adverse effects on the body, especially hyperkalemia, which can cause sudden cardiac arrest and is considered dangerous in clinical settings. Patients with normal kidney function are less likely to develop hyperkalemia, which is more commonly seen in those who may have consumed Chinese herbal medicines containing high amounts of potassium for a long time. In patients with renal insufficiency, due to impaired kidney excretory function, hyperkalemia occurs more easily. Patients with hyperkalemia should generally avoid ACE inhibitors and ARB medications. For example, drugs like ACE inhibitors and spironolactone can further exacerbate hyperkalemia, so these types of medications are definitely not advisable. (The use of medications should be under the guidance of a professional doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
50sec home-news-image

Is hyperkalemia acidosis?

Hyperkalemia is not acidosis, but during acidosis, the hydrogen ions of the gastric fluid within cells enter the cells, causing the potassium ions inside the cells to move to the extracellular fluid, resulting in hyperkalemia. Clinically, it is commonly seen in organic acidosis, lactic acidosis, diabetic ketoacidosis, and acute renal failure causing acidosis. Once hyperkalemia occurs and is diagnosed, immediate treatment should be administered. First, the primary disease should be treated; next, serum potassium should be reduced. In particularly severe cases, bedside hemofiltration can be administered, and the cardiotoxic effects of hyperkalemia should be mitigated.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
1min 27sec home-news-image

Principles of treatment for hyperkalemia

First, to counteract the cardiac inhibitory effects of potassium, calcium salts can be injected, and sodium bicarbonate can be used to alkalinize the blood. Then, an infusion of hypertonic glucose and insulin can be administered to promote the internal movement of potassium ions. Secondly, to promote the excretion of potassium, diuretics can be used. The second method involves the use of cation exchange resins and sorbitol. The third method employs dialysis therapy, which can include both hemodialysis and peritoneal dialysis. The fourth method is to reduce the sources of potassium, stop a high potassium diet or the use of potassium-containing drugs. In cases of severe hyperkalemia, where there is a life-threatening emergency, urgent measures should be taken, primarily the intravenous administration of calcium ion antagonists to counteract the cardiac toxicity of potassium. In cases of severe arrhythmias or even cardiac arrest, emergency installation of a pacemaker or defibrillation can be carried out, and respiratory muscle paralysis may require ventilatory support. (Medication use should be under the guidance of a doctor)