Clinical manifestations of hyperkalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 04, 2024
00:00
00:00

The clinical manifestations of hyperkalemia mainly affect the cardiovascular system, often presenting with slowed heart rate and various arrhythmias. When the blood potassium level is between 6.6 and 8.0 mmol/L, a tent-shaped T-wave can be observed. Rapid increases in blood potassium can lead to ventricular tachycardia, and even ventricular fibrillation. A gradual increase in blood potassium can cause conduction blocks, and in severe cases, cardiac arrest. Sudden death in severe hyperkalemia is mainly due to ventricular fibrillation and cardiac arrest. The second aspect is symptoms related to the neuromuscular system. As the concentration of potassium ions in the extracellular fluid increases, the resting membrane potential drops, leading to muscle weakness and even paralysis, typically more pronounced in the lower limbs and extending upward along the trunk. In severe cases, some patients may experience difficulty in swallowing and breathing difficulties. Symptoms involving the central nervous system mainly include restlessness, confusion, and fainting.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
46sec home-news-image

What are the symptoms of hyperkalemia?

Mild hyperkalemia can affect muscle tissues, causing mild muscle tremors, while severe hyperkalemia may reduce the excitability of neuromuscular functions, leading to weakness and even flaccid paralysis in the limbs. Hyperkalemia can also impact the heart, mainly resulting in decreased myocardial excitability, decreased myocardial conductivity, and decreased myocardial automaticity. The effects on the electrocardiogram (ECG) primarily manifest as low and widened P waves, widened QS complexes, decreased R waves, and elevated T waves. Regarding myocardial contractility, hyperkalemia mainly causes a decrease in contractility and can lead to metabolic acidosis.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Causes of Hyperkalemia

Common causes of hyperkalemia in clinical settings include: First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired. Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia. Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

How to rescue hyperkalemia

Hyperkalemia must be dealt with immediately once it occurs. The usual treatments in clinical settings include promoting potassium excretion using furosemide or other loop diuretics to maximize renal potassium excretion, or using oral or rectal potassium-eliminating agents. For life-threatening hyperkalemia with serum potassium levels greater than 6.5 mmol/L, hemodialysis is necessary. Another approach is to facilitate the shift of potassium into cells, which is done through the administration of insulin with glucose, or sodium bicarbonate along with calcium gluconate that helps protect the myocardium, thus providing treatment and protective measures for hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
49sec home-news-image

What are the symptoms of hyperkalemia?

The effects of hyperkalemia on the body mainly include the following aspects: First, the impact on muscle tissue: mild hyperkalemia can cause slight tremors in muscles. If the potassium levels continue to rise, this can lead to decreased neuromuscular excitability, resulting in limbs becoming weak and flaccid, and even leading to delayed paralysis. Second, the impact on the cardiac system: it can cause a decrease in myocardial excitability, conductibility, and automaticity. The electrocardiogram shows a depressed P wave, widened QRS complex, shortened QT interval, and peaked T waves. Third, hyperkalemia affects acid-base balance and can lead to metabolic acidosis during hyperkalemia.

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
53sec home-news-image

Why should calcium be supplemented for hyperkalemia?

When high potassium levels trigger ventricular automaticity, it is recommended to administer calcium to counteract its cardiotoxicity. This is because during hyperkalemia, the excitability of the myocardium significantly increases. Calcium ions do not affect the distribution of potassium inside and outside the cells, but they can stabilize the excitability of the heart. Therefore, even if a patient's blood calcium level is normal, calcium should be injected immediately when there is severe arrhythmia. Calcium ions only temporarily counteract the toxicity of potassium to the heart and do not reduce the concentration of potassium in the blood. Thus, they can only serve as a short-term emergency medication. (Medication should be used under the guidance of a doctor.)