The difference between hyperkalemia and hypokalemia.

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 05, 2024
00:00
00:00

Hypokalemia refers to a serum potassium concentration lower than 3.5mmol/L, and its clinical manifestations are diverse. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. Mild hypokalemia shows on an electrocardiogram as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias, such as torsades de pointes and ventricular fibrillation. In terms of the neuromuscular system, the most prominent symptom of hypokalemia is the loss of tone in smooth muscles and flaccid paralysis in skeletal muscles, which, when involving respiratory muscles, can lead to respiratory failure. Hyperkalemia, on the other hand, refers to a serum potassium concentration exceeding 5.5mmol/L, mainly presenting clinical symptoms in cardiac and neuromuscular conduction. Severe cases can cause bradycardia, atrioventricular conduction block, and even sinus arrest. Mild hyperkalemia, with levels between 5.5 to 6.0mmol/L, shows on an electrocardiogram as peaked T waves. As hyperkalemia continues to increase, it can lead to lengthening of the PR interval or disappearance of the P wave, QRS widening, and eventually cardiac arrest. Regarding the neuromuscular system, the clinical manifestations of hyperkalemia are very similar to those of hypokalemia, including weakness and paralysis of skeletal and smooth muscles.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 18sec home-news-image

Common symptoms of hypokalemia and hyperkalemia

The common symptoms of hyperkalemia and hypokalemia, mainly seen in severe cases of high or low potassium, manifest as neurological and muscular symptoms as well as circulatory system symptoms, which are fairly similar in both conditions. If the blood potassium is particularly low, less than 2.0 mmol per liter, it can lead to reduced or absent reflexes. In severe cases, this may progress to paralysis of the respiratory muscles, causing respiratory pump failure. For hyperkalemia, particularly severe cases may also present with swallowing difficulties and respiratory distress. These central nervous system issues can lead to confusion and fainting. Another similar issue is the impact on the circulatory system; severe hypokalemia can cause ventricular tachycardia and even ventricular fibrillation, leading to death. In hyperkalemia, the impact on the cardiovascular system primarily causes malignant tachycardia and can also result in ventricular fibrillation. The main cause of sudden death in hyperkalemia is ventricular fibrillation and cardiac arrest, demonstrating that severe hyperkalemia and hypokalemia similarly cause significant arrhythmic conditions in the heart.

doctor image
home-news-image
Written by Luo Han Ying
Endocrinology
50sec home-news-image

Why does hyperkalemia cause muscle weakness?

The muscles that govern movement in our body are striated muscles, and each muscle cell in striated muscles has many receptors, which we can think of as a signal receiving and transmitting station. When we need to move, the brain nerves will send a signal to this station, which then controls muscle movement. A very important ion in muscle movement is the calcium ion. There is a receptor for calcium ions on our muscle cells, and it is related to the concentration of blood potassium. When the concentration of blood potassium is too low, a condition known as hypokalemia, or too high, known as hyperkalemia, the calcium ion receptor will be inhibited. At this point, our muscles will exhibit symptoms of muscle weakness.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 2sec home-news-image

The difference between hyperkalemia and hypokalemia

Potassium ions are one of the essential electrolytes necessary for human life. Their physiological functions include maintaining cell metabolism, regulating osmotic pressure and acid-base balance, and preserving cell emergency functions, among others. The normal concentration of serum potassium is between 3.5 and 5.5 millimoles per liter. If it falls below 3.5 millimoles per liter, it is categorized as hypokalemia. If it exceeds 5.5 millimoles per liter, it is categorized as hyperkalemia. Common causes of hypokalemia include insufficient potassium intake, excessive potassium excretion, and the shifting of potassium from outside to inside the cells. The main causes of hyperkalemia include increased intake or reduced excretion of potassium, as well as substantial movement of potassium from inside the cells to the outside. Whenever hyperkalemia or hypokalemia occurs, it should be actively managed.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Zhang Jun Jun
Endocrinology
1min 36sec home-news-image

Can hyperkalemia be cured?

Hyperkalemia is treatable. The first cause of hyperkalemia is an excess of potassium, mainly seen in reduced renal excretion and excessive potassium intake, such as the infusion of a large volume of stored blood. In this case, diuretics can be used to increase the excretion of potassium. For cases of excessive potassium intake and excessive transfusion of stored blood, treatment options include diuresis and the use of glucose with insulin to lower potassium levels, or even treatment with sodium bicarbonate. In cases of shift hyperkalemia, primarily seen in hemolysis and septic shock, dialysis can be used to reduce hyperkalemia while simultaneously treating the underlying disease. The third type is concentration hyperkalemia and severe hemorrhagic shock, which causes a reduction in blood volume leading to blood concentration and relative hyperkalemia. Treatment of the primary disease first is advisable, and typically, the high blood potassium can self-correct after the primary disease is cured. There is also a condition known as pseudohyperkalemia, for example, prolonged storage of drawn blood can cause hemolysis within the tube, poor venipuncture technique, thrombocytosis, and leukocytosis can all lead to pseudo-hyperkalemia. In these cases, re-drawing blood multiple times to verify the potassium levels can address this issue. Therefore, hyperkalemia is treatable.