How should hyperkalemia be managed?

Written by Zhao Xin Lan
Endocrinology
Updated on January 10, 2025
00:00
00:00

First, it is necessary to assess the severity of the hyperkalemia, whether it is mild, moderate, or severe. For mild hyperkalemia, it can be managed by taking oral diuretics or intravenous infusion of glucose with insulin, which can normalize the potassium level.

In cases of severe hyperkalemia, where blood potassium exceeds 7.5 mmol/L, there is a risk of causing cardiac arrest. Emergency measures to promote potassium excretion are required, such as hemodialysis or peritoneal dialysis. It is also necessary to counteract the myocardial depressive effects of potassium, which can be managed with the injection of calcium gluconate, along with the intravenous infusion of hypertonic glucose and insulin.

(The use of medications should be conducted under the guidance of a doctor.)

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Causes of Hyperkalemia

Common causes of hyperkalemia in clinical settings include: First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired. Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia. Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 31sec home-news-image

The difference between hyperkalemia and hypokalemia.

Hypokalemia refers to a serum potassium concentration lower than 3.5mmol/L, and its clinical manifestations are diverse. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. Mild hypokalemia shows on an electrocardiogram as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias, such as torsades de pointes and ventricular fibrillation. In terms of the neuromuscular system, the most prominent symptom of hypokalemia is the loss of tone in smooth muscles and flaccid paralysis in skeletal muscles, which, when involving respiratory muscles, can lead to respiratory failure. Hyperkalemia, on the other hand, refers to a serum potassium concentration exceeding 5.5mmol/L, mainly presenting clinical symptoms in cardiac and neuromuscular conduction. Severe cases can cause bradycardia, atrioventricular conduction block, and even sinus arrest. Mild hyperkalemia, with levels between 5.5 to 6.0mmol/L, shows on an electrocardiogram as peaked T waves. As hyperkalemia continues to increase, it can lead to lengthening of the PR interval or disappearance of the P wave, QRS widening, and eventually cardiac arrest. Regarding the neuromuscular system, the clinical manifestations of hyperkalemia are very similar to those of hypokalemia, including weakness and paralysis of skeletal and smooth muscles.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
42sec home-news-image

Treatment methods for hyperkalemia

In clinical practice, a blood potassium level greater than 5.5 millimoles per liter is referred to as hyperkalemia. Once hyperkalemia occurs, it must be actively managed: the first step is to stop using medications that increase blood potassium, such as sustained-release potassium chloride, potassium-sparing diuretics like spironolactone, and ACE inhibitors; the second step is to use calcium supplements to counteract the toxic effects of high potassium on the heart; the third step is to use hypertonic glucose with insulin and sodium bicarbonate to correct acidosis and promote the movement of potassium into the cells; the fourth step is to use the diuretic furosemide to help reduce blood potassium. If drug treatment is ineffective, bedside hemodialysis may be employed. (Use of the above medications should be under the guidance of a doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 2sec home-news-image

The difference between hyperkalemia and hypokalemia

Potassium ions are one of the essential electrolytes necessary for human life. Their physiological functions include maintaining cell metabolism, regulating osmotic pressure and acid-base balance, and preserving cell emergency functions, among others. The normal concentration of serum potassium is between 3.5 and 5.5 millimoles per liter. If it falls below 3.5 millimoles per liter, it is categorized as hypokalemia. If it exceeds 5.5 millimoles per liter, it is categorized as hyperkalemia. Common causes of hypokalemia include insufficient potassium intake, excessive potassium excretion, and the shifting of potassium from outside to inside the cells. The main causes of hyperkalemia include increased intake or reduced excretion of potassium, as well as substantial movement of potassium from inside the cells to the outside. Whenever hyperkalemia or hypokalemia occurs, it should be actively managed.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
59sec home-news-image

Common Causes of Hyperkalemia

Hyperkalemia is when the serum potassium concentration exceeds 5.5 millimoles per liter. Common causes include excessive potassium intake and large doses of potassium salts, which can lead to hyperkalemia, as well as the use of stored blood. Another cause is reduced potassium excretion; in patients with renal insufficiency, reduced urine output or anuria leads to decreased renal potassium excretion. If potassium supplementation is inappropriate at this time, or if potassium-sparing diuretics are used, severe hyperkalemia can occur. Another scenario is the leakage of intracellular potassium during respiratory and metabolic acidosis, where sodium ion exchange occurs in cells, hydrogen ions enter the cells, and potassium ions leak out to the extracellular space, which can lead to increased blood potassium. These are the common causes of hyperkalemia.