How is hyperkalemia treated?

Written by Wang Li Bing
Intensive Care Medicine Department
Updated on September 19, 2024
00:00
00:00

Hyperkalemia must be handled immediately after it occurs, otherwise it can cause malignant arrhythmias and even endanger life. The first step is to stop potassium supplements, such as potassium chloride sustained-release tablets; the second step is to stop potassium-sparing diuretics, such as spironolactone and other drugs. We can administer calcium intravenously to antagonize the toxic effects of high potassium on the heart. Additionally, we can use high glucose with insulin and intravenously drip sodium bicarbonate, which can promote the movement of potassium into cells. We can also use diuretics to excrete potassium through urine. If the treatment effect is poor after medication, we can use bedside hemodialysis to reduce blood potassium.

Other Voices

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
1min 13sec home-news-image

The Impact of Hyperkalemia on the Heart

Typically, when serum potassium exceeds 5.5 mmol/L, it is referred to as hyperkalemia. The manifestations of hyperkalemia on the cardiovascular system usually include bradycardia and arrhythmias, but generally do not lead to congestive heart failure. Sometimes, there may be cardiac enlargement and diminished heart sounds, with characteristic changes on an electrocardiogram. Finally, when serum potassium reaches 12 mmol/L, some parts of the myocardium may be excited and recover, while others have not yet depolarized, making it very easy to cause tachycardia, flutter, ventricular fibrillation, and even cardiac arrest, leading to death. Therefore, hyperkalemia is also a major cause of sudden cardiac death. Some patients with hyperkalemia may only exhibit arrhythmias and show no neuromuscular symptoms before death, thus a rapid diagnosis is crucial. The severity of hyperkalemia is generally assessed by both the measured serum potassium concentration and changes in the electrocardiogram.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
49sec home-news-image

How is hyperkalemia treated?

Hyperkalemia must be handled immediately after it occurs, otherwise it can cause malignant arrhythmias and even endanger life. The first step is to stop potassium supplements, such as potassium chloride sustained-release tablets; the second step is to stop potassium-sparing diuretics, such as spironolactone and other drugs. We can administer calcium intravenously to antagonize the toxic effects of high potassium on the heart. Additionally, we can use high glucose with insulin and intravenously drip sodium bicarbonate, which can promote the movement of potassium into cells. We can also use diuretics to excrete potassium through urine. If the treatment effect is poor after medication, we can use bedside hemodialysis to reduce blood potassium.

doctor image
home-news-image
Written by Zhao Xin Lan
Endocrinology
51sec home-news-image

Hyperkalemia presents with what symptoms?

Early signs of hyperkalemia often manifest as abnormal numbness in the limbs, extreme fatigue, muscle soreness, pallor and clamminess of limbs, and in severe cases, there may be difficulties in swallowing, speaking, and breathing, and even ascending paralysis and disappearance of tendon reflexes. The central nervous system may be affected, presenting as restlessness, fainting, and even confusion. The heart is often a major organ damaged by hyperkalemia, which can lead to a slowed heart rate. Patients may experience palpitations and panic among other discomforts, and in the most severe cases, it can cause cardiac arrest. Other symptoms may include nausea, vomiting, and abdominal pain, among other gastrointestinal symptoms.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

The impact of hyperkalemia on the heart

The effects of hyperkalemia on the heart mainly manifest in the following ways: First, it affects the excitability of the myocardium, as hyperkalemia can cause reduced or even absent myocardial excitability; second, it impacts myocardial conductivity. In hyperkalemia, due to the reduced resting potential, the amplitude and speed of the action potential's phase zero decrease, leading to slowed excitability spread and reduced conductivity; third, it influences the automaticity of the myocardium. In hyperkalemia, due to slowed automatic depolarization, the automaticity is reduced. Additionally, hyperkalemia produces characteristic changes in the electrocardiogram, such as depression or disappearance of the P wave, prolongation of the PR interval, widening of the S wave, and narrowing and peaking of the T wave, which are the main changes in the electrocardiogram due to hyperkalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Causes of Hyperkalemia

Common causes of hyperkalemia in clinical settings include: First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired. Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia. Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.