Why does hypokalemia cause abnormal acidic urine?

Written by Wei Shi Liang
Intensive Care Unit
Updated on April 06, 2025
00:00
00:00

Hypokalemia is characterized by a reduction in the concentration of potassium ions in the extracellular fluid, which causes the transfer of three potassium ions from inside the cells to the outside, while two sodium ions and one hydrogen ion move from the outside to the inside of the cells. Due to the decreased concentration of hydrogen ions in the extracellular fluid, metabolic alkalosis can easily occur. At the same time, due to the reduction of blood potassium, the potassium-sodium exchange in the renal tubules decreases. Renal tubular cells secrete more hydrogen ions to exchange with sodium ions, and the reabsorption of bicarbonate ions increases, raising the pH value. This metabolic alkalosis increases the number of hydrogen ions inside the cells and the kidney's hydrogen secretion, thus making the urine acidic, often referred to as paradoxical aciduria.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 8sec home-news-image

Hypokalemia belongs to the department of nephrology.

Hypokalemia is seen in various clinical departments and can affect the nervous system, muscles, heart, digestive system, kidneys, as well as carbohydrate metabolism and acid-base balance. If hypokalemia occurs, it is important to first identify the primary disease and treat it specifically in the corresponding department. In cases of severe hypokalemia, patients should be admitted to the intensive care unit. Treatment involves addressing the primary disease and promptly supplementing potassium. Severe hypokalemia, especially if accompanied by arrhythmias or muscle paralysis, requires immediate potassium supplementation. Potassium deficiency within cells recovers slowly; treatment may take four to six days to gradually reach a balance. Additionally, it is important to timely correct other electrolyte imbalances. The specific department to which the patient is admitted mainly depends on the primary disease, but in cases of very severe conditions, potassium supplementation should be managed in the intensive care unit.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
46sec home-news-image

The impact of hypokalemia on skeletal muscle

In clinical practice, hypokalemia can affect the muscular and nervous conduction systems. The most prominent symptoms of hypokalemia in the neuromuscular system are flaccid paralysis of the skeletal muscles, loss of tension in smooth muscles, and rhabdomyolysis. If the respiratory muscles are involved, it can lead to respiratory failure. Hypokalemia can also lead to insulin resistance, resulting in significantly abnormal glucose tolerance. If hypokalemia occurs clinically, it is crucial to actively treat the primary disease, appropriately supplement potassium, monitor during the supplementation process to avoid hyperkalemia, and closely monitor blood potassium levels with regular reviews.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 9sec home-news-image

Precautions for intravenous potassium supplementation in patients with hypokalemia

Patients with hypokalemia should closely monitor their blood potassium levels when receiving intravenous potassium supplementation, rechecking potassium levels within 1-4 hours after supplementation. Continuous electrocardiogram monitoring is necessary to closely observe any changes in the electrocardiogram and prevent life-threatening hyperkalemia. In patients with renal impairment, the potassium supplementation should be 50% of that for normal patients, and it is generally considered that the daily potassium supplementation should not exceed 100-200 mmol. For patients with severe hypokalemia, the total daily potassium supplementation can reach 240-400 mmol, but blood potassium levels should be closely monitored to prevent hyperkalemia. Peripheral administration of high-concentration potassium can irritate the vein wall, causing pain and phlebitis. Generally, it is considered that the rate of potassium supplementation through peripheral veins should not exceed 40 mmol/L.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
57sec home-news-image

How many days does hypokalemia need to be treated?

In the extracellular fluid of human cells, the concentration of potassium in the blood is 3.5 to 5.5 millimoles per liter. If the potassium level falls below 3.5 millimoles per liter, it is considered hypokalemia. The main causes of hypokalemia are insufficient intake and excessive excretion. The treatment duration for hypokalemia caused by different primary diseases varies. For mild hypokalemia, oral potassium supplements alone can correct the condition, but this generally takes about three to five days. For severe hypokalemia, intravenous potassium should be administered as soon as possible, preferably through a central venous line for fluid administration. At this time, the focus is on treating the underlying disease and timely supplementation of potassium ions. The duration of treatment may be relatively longer, and it is not possible to determine a specific timeframe.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Why does hypokalemia cause alkalosis?

Hypokalemia can cause metabolic alkalosis because it leads to the intracellular movement of hydrogen ions. In hypokalemia, potassium shifts from the inside to the outside of the cell to compensate for the decreased serum potassium. As an exchange, hydrogen ions from the gastric fluid move into the cells, causing cellular alkalosis and intracellular acidosis. Additionally, due to potassium deficiency in the renal tubular epithelial cells, the potassium-sodium exchange decreases and the sodium-hydrogen exchange increases, leading to enhanced excretion of hydrogen ions and increased reabsorption of bicarbonate ions, resulting in hypokalemia-induced metabolic alkalosis, which needs to be promptly addressed clinically.