What are the symptoms of hypokalemia?

Written by Gan Jun
Endocrinology
Updated on March 07, 2025
00:00
00:00

When the body's blood potassium level falls below 3.5 millimoles per liter, it is called hypokalemia. Hypokalemia can cause adverse symptoms in multiple systems of the body, initially causing weakness and fatigue in the limbs, flaccid paralysis, sluggish and absent tendon reflexes, and in severe cases, respiratory difficulty. At the same time, hypokalemia can lead to a series of central nervous system damages, such as apathy, a blank stare, drowsiness, and confusion; it also causes nausea, poor appetite, abdominal distension, and intestinal paralysis among other adverse gastrointestinal phenomena. Additionally, it can lead to palpitations, and rapid atrial or ventricular arrhythmias, among other adverse phenomena. Therefore, it is crucial to provide timely and proper potassium supplementation and correction of blood potassium levels for patients with hypokalemia.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 19sec home-news-image

Hypokalemia can cause

Hypokalemia can manifest as weakness, a bitter taste in the mouth, lack of appetite, irritability, or mood swings. In severe cases, symptoms like nausea, vomiting, drowsiness, reduced orientation ability, and confusion may occur. In terms of muscle and nerve effects, hypokalemia leads to decreased neuromuscular excitability, and when blood potassium levels fall below 2.5mmol/L, clinical symptoms of muscle weakness appear. If blood potassium levels drop below 2.0mmol/L, flaccid paralysis and disappearance or weakening of tendon reflexes may occur. In severe cases, paralysis of the respiratory muscles and even respiratory failure might develop. For the gastrointestinal tract, common symptoms include lack of appetite, nausea, and vomiting, with severe cases leading to intestinal paralysis. Hypokalemia can cause an increase in heart rate and even ventricular fibrillation, which can be fatal. Additionally, it can result in metabolic alkalosis. Hypokalemia can cause metabolic alkalosis, and vice versa, with each condition potentially leading to the other, often coexisting simultaneously.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

Clinical symptoms of hypokalemia

Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
1min 3sec home-news-image

How to supplement potassium for hypokalemia

Hypokalemia generally has two common methods of potassium supplementation. The first is oral potassium supplementation, and the second is intravenous potassium supplementation. Oral potassium supplementation is the safest method, for example, taking potassium chloride sustained-release tablets orally, as well as potassium chloride injection solution orally, and eating more potassium-rich vegetables and fruits. The second method is intravenous potassium supplementation. For intravenous potassium supplementation, it is important to pay attention to the patient's urine output. If the patient's urine output is adequate, intravenous potassium supplementation can be appropriately performed, and the concentration of intravenous potassium supplementation should not exceed 0.3% to prevent arrhythmias caused by hyperkalemia. (Please use medications under the guidance of a doctor.)

doctor image
home-news-image
Written by Chen Xie
Endocrinology
1min 35sec home-news-image

Hypokalemia is formed in what way?

Hypokalemia refers to a condition where the serum potassium level is below 3.5 millimoles per liter. The primary cause of hypokalemia is the loss of potassium in the body. Hypokalemia can be classified into three types based on its cause: potassium deficiency hypokalemia, redistributive hypokalemia, and dilutional hypokalemia. Potassium deficiency hypokalemia is mainly characterized by insufficient intake or excessive excretion. Insufficient intake is typically seen in patients who are fasting, have selective eating habits, or suffer from anorexia, while excessive excretion is mainly through gastrointestinal or renal loss of potassium. Redistributive hypokalemia usually occurs due to metabolic or respiratory alkalosis, the recovery phase of acidosis, heavy usage of glucose, instances of periodic paralysis, acute emergency situations, and the use of folic acid and vitamin B12 in treating anemia or repeat transfusions of cold stored washed red blood cells. Dilutional hypokalemia, on the other hand, is mainly caused by the retention of extracellular fluid, leading to excessive water or water intoxication-induced hypokalemia.

doctor image
home-news-image
Written by Li Fang Fang
Hematology
48sec home-news-image

Hypokalemia is a condition.

Hypokalemia is classified as an electrolyte disorder. When suffering from hypokalemia, patients may experience general weakness and poor appetite. In severe cases, paralysis of the limbs may occur. There are certain causes of hypokalemia, which can be divided into three types. One is reduced intake, the second is excessive loss, and the third is abnormal distribution. Reduced intake mainly refers to patients with poor diets; excessive loss is common in patients with infections, diarrhea, and those who excrete a high amount of potassium in their urine; abnormal distribution refers to potassium moving from the extracellular space into cells, causing hypokalemia.