Clinical symptoms of hypokalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 01, 2024
00:00
00:00

Hypokalemia has diverse clinical manifestations. The most life-threatening symptoms involve the cardiac conduction system and the neuromuscular system. In mild hypokalemia, the electrocardiogram (ECG) shows flattened T waves or their disappearance, along with the appearance of U waves. Severe hypokalemia can lead to lethal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are in the skeletal muscle, presenting as sluggish paralysis and loss of tone in the smooth muscle, leading to rhabdomyolysis. If respiratory muscles are affected, it may result in respiratory failure. Hypokalemia can also cause insulin resistance and obstruct insulin release, leading to significant glucose tolerance abnormalities. Decreased potassium excretion reduces the kidney's ability to concentrate urine, resulting in polyuria.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
53sec home-news-image

Hypokalemia is a condition.

Potassium is one of the essential electrolytes for life. Its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. The human body intakes about 100 millimoles of potassium each day, of which 90% is excreted through the kidneys, and the remainder is excreted through the gastrointestinal tract. Potassium mainly exists inside cells, with serum potassium accounting for only 2% of the total potassium in the body. The concentration of potassium in serum is between 3.5 to 5.5 mmol/L. If the concentration of serum potassium is below 3.5 mmol/L, it is considered hypokalemia, which is often due to insufficient potassium intake or excessive potassium excretion.

doctor image
home-news-image
Written by Wang Li Bing
Intensive Care Medicine Department
46sec home-news-image

Can hypokalemia be cured?

Hypokalemia is very common in clinical settings, and there are mainly two treatment methods. The first one is the oral administration of sustained-release potassium chloride tablets or oral potassium chloride solution. Patients can be advised to consume potassium-rich vegetables and fruits, etc. The second method is intravenous potassium supplementation, which has higher requirements. It is important to monitor the patient's urination; if urination is adequate, intravenous supplementation can proceed, but the concentration of potassium should not exceed 0.3%. After the occurrence of hypokalemia, it is crucial to actively search for the cause and provide symptomatic treatment. Generally, the prognosis for hypokalemia is good.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 4sec home-news-image

Causes of hypokalemia

Potassium is one of the essential electrolytes necessary for life. Its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure and acid-base balance, and preserving cell stress response, etc. Daily potassium intake is about 100 millimoles, with 90% excreted through the kidneys and the remainder through the gastrointestinal tract. Common causes of hypokalemia include reduced intake, such as long-term inability to eat without timely potassium supplementation. Even though potassium intake decreases, the kidneys continue to excrete potassium, leading to potassium loss. The second cause is increased excretion, which includes losses through the gastrointestinal tract and the kidneys, both of which can lead to hypokalemia. The third cause is the movement of potassium from outside to inside the cells, which can occur during metabolic alkalosis or when glucose and insulin are administered, promoting the transfer of potassium ions into the cells, resulting in hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 1sec home-news-image

Clinical manifestations of hypokalemia

The clinical manifestations of hypokalemia are diverse, with the most life-threatening symptoms affecting the cardiac conduction system and the neuromuscular system. Mild hypokalemia on an electrocardiogram presents as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias such as ventricular tachycardia and ventricular fibrillation. In the neuromuscular system, the most prominent symptoms of hypokalemia are skeletal muscle flaccid paralysis and sustained smooth muscle tension, which can involve the respiratory muscles and lead to respiratory failure. Hypokalemia can also cause insulin resistance or hinder insulin release, leading to significant glucose tolerance abnormalities. Reduced potassium excretion decreases the kidney's ability to concentrate urine, resulting in polyuria and urine with low specific gravity.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 9sec home-news-image

Precautions for intravenous potassium supplementation in patients with hypokalemia

Patients with hypokalemia should closely monitor their blood potassium levels when receiving intravenous potassium supplementation, rechecking potassium levels within 1-4 hours after supplementation. Continuous electrocardiogram monitoring is necessary to closely observe any changes in the electrocardiogram and prevent life-threatening hyperkalemia. In patients with renal impairment, the potassium supplementation should be 50% of that for normal patients, and it is generally considered that the daily potassium supplementation should not exceed 100-200 mmol. For patients with severe hypokalemia, the total daily potassium supplementation can reach 240-400 mmol, but blood potassium levels should be closely monitored to prevent hyperkalemia. Peripheral administration of high-concentration potassium can irritate the vein wall, causing pain and phlebitis. Generally, it is considered that the rate of potassium supplementation through peripheral veins should not exceed 40 mmol/L.