Hypokalemia is a condition.

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 06, 2024
00:00
00:00

Potassium is one of the essential electrolytes for life. Its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. The human body intakes about 100 millimoles of potassium each day, of which 90% is excreted through the kidneys, and the remainder is excreted through the gastrointestinal tract. Potassium mainly exists inside cells, with serum potassium accounting for only 2% of the total potassium in the body. The concentration of potassium in serum is between 3.5 to 5.5 mmol/L. If the concentration of serum potassium is below 3.5 mmol/L, it is considered hypokalemia, which is often due to insufficient potassium intake or excessive potassium excretion.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
46sec home-news-image

The impact of hypokalemia on skeletal muscle

In clinical practice, hypokalemia can affect the muscular and nervous conduction systems. The most prominent symptoms of hypokalemia in the neuromuscular system are flaccid paralysis of the skeletal muscles, loss of tension in smooth muscles, and rhabdomyolysis. If the respiratory muscles are involved, it can lead to respiratory failure. Hypokalemia can also lead to insulin resistance, resulting in significantly abnormal glucose tolerance. If hypokalemia occurs clinically, it is crucial to actively treat the primary disease, appropriately supplement potassium, monitor during the supplementation process to avoid hyperkalemia, and closely monitor blood potassium levels with regular reviews.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min home-news-image

Symptoms of hypokalemia

The clinical manifestations of hypokalemia are diverse, and the most life-threatening involve the cardiac conduction system and neuromuscular system. Mild hypokalemia is characterized on the electrocardiogram by flattened or absent T waves and the appearance of U waves. Severe hypokalemia can lead to fatal arrhythmias, such as ventricular tachycardia, ventricular fibrillation, or sudden death. In the neuromuscular system, the most prominent symptoms of hypokalemia are skeletal muscle relaxation, paralysis, and loss of tone in smooth muscles, leading to rhabdomyolysis. When respiratory muscles are involved, it can lead to respiratory failure. Hypokalemia can also cause insulin resistance or hinder insulin release, leading to significant glucose intolerance. A decrease in potassium excretion results in a reduced ability of the kidneys to concentrate urine, causing polyuria and low specific gravity urine.

doctor image
home-news-image
Written by Li Fang Fang
Hematology
33sec home-news-image

How is hypokalemia tested?

Hypokalemia can be diagnosed by drawing 3-5ml of venous blood for biochemical and electrolyte tests. Patients with hypokalemia may experience weakness or even paralysis, hence it is crucial to actively treat by replenishing potassium. During potassium supplementation, it is also important to clarify the underlying cause of the hypokalemia in order to solve the issue from its root. Otherwise, merely supplementing potassium might result in recurring hypokalemia.

doctor image
home-news-image
Written by Chen Xie
Endocrinology
1min 35sec home-news-image

Hypokalemia is formed in what way?

Hypokalemia refers to a condition where the serum potassium level is below 3.5 millimoles per liter. The primary cause of hypokalemia is the loss of potassium in the body. Hypokalemia can be classified into three types based on its cause: potassium deficiency hypokalemia, redistributive hypokalemia, and dilutional hypokalemia. Potassium deficiency hypokalemia is mainly characterized by insufficient intake or excessive excretion. Insufficient intake is typically seen in patients who are fasting, have selective eating habits, or suffer from anorexia, while excessive excretion is mainly through gastrointestinal or renal loss of potassium. Redistributive hypokalemia usually occurs due to metabolic or respiratory alkalosis, the recovery phase of acidosis, heavy usage of glucose, instances of periodic paralysis, acute emergency situations, and the use of folic acid and vitamin B12 in treating anemia or repeat transfusions of cold stored washed red blood cells. Dilutional hypokalemia, on the other hand, is mainly caused by the retention of extracellular fluid, leading to excessive water or water intoxication-induced hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
53sec home-news-image

Hypokalemia is a condition.

Potassium is one of the essential electrolytes for life. Its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. The human body intakes about 100 millimoles of potassium each day, of which 90% is excreted through the kidneys, and the remainder is excreted through the gastrointestinal tract. Potassium mainly exists inside cells, with serum potassium accounting for only 2% of the total potassium in the body. The concentration of potassium in serum is between 3.5 to 5.5 mmol/L. If the concentration of serum potassium is below 3.5 mmol/L, it is considered hypokalemia, which is often due to insufficient potassium intake or excessive potassium excretion.