Common symptoms of hypokalemia and hyperkalemia

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 09, 2024
00:00
00:00

The common symptoms of hyperkalemia and hypokalemia, mainly seen in severe cases of high or low potassium, manifest as neurological and muscular symptoms as well as circulatory system symptoms, which are fairly similar in both conditions. If the blood potassium is particularly low, less than 2.0 mmol per liter, it can lead to reduced or absent reflexes. In severe cases, this may progress to paralysis of the respiratory muscles, causing respiratory pump failure. For hyperkalemia, particularly severe cases may also present with swallowing difficulties and respiratory distress. These central nervous system issues can lead to confusion and fainting. Another similar issue is the impact on the circulatory system; severe hypokalemia can cause ventricular tachycardia and even ventricular fibrillation, leading to death. In hyperkalemia, the impact on the cardiovascular system primarily causes malignant tachycardia and can also result in ventricular fibrillation. The main cause of sudden death in hyperkalemia is ventricular fibrillation and cardiac arrest, demonstrating that severe hyperkalemia and hypokalemia similarly cause significant arrhythmic conditions in the heart.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
45sec home-news-image

Causes of Hyperkalemia

Common causes of hyperkalemia in clinical settings include: First, it is related to excessive intake. Generally, a high-potassium diet under normal kidney function does not cause hyperkalemia. It only occurs when there is excessive or rapid intravenous potassium supplementation, or when kidney function is impaired. Second, hyperkalemia caused by reduced excretion. Common reasons include renal failure, lack of adrenocortical hormones, and primary renal tubular potassium secretion disorders, all of which can cause hyperkalemia. Third, a large transfer of potassium ions from inside the cells to the outside can also cause hyperkalemia.

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
47sec home-news-image

Hyperkalemia

Typically, when serum potassium exceeds 5.5 mmol/L, it is referred to as hyperkalemia. However, an increase in serum potassium does not necessarily reflect an overall increase in body potassium; serum potassium can also rise when there is a deficiency of total body potassium. Therefore, in clinical practice, serum potassium is evaluated in conjunction with an electrocardiogram and medical history to determine if a patient has hyperkalemia. Hyperkalemia is an important emergency in internal medicine and can often lead to sudden cardiac arrest. It should be identified and prevented early.

doctor image
home-news-image
Written by Chen Li Ping
Endocrinology
58sec home-news-image

How is hyperkalemia treated?

For hyperkalemia, commonly used clinical treatments include firstly diuretics, which increase the excretion of potassium, thus increasing its discharge from the body. Additionally, hypertonic glucose with insulin is used intravenously to facilitate the movement of potassium from outside to inside the cells. Sodium bicarbonate can also be used to correct acidosis, which can likewise reduce blood potassium levels. When hyperkalemia causes ventricular arrhythmias, calcium injections should be administered immediately to counteract the cardiac toxicity of high potassium. If these treatments do not result in significant effects and the condition is critical, emergency hemodialysis or peritoneal dialysis can be performed to lower blood potassium levels. (Medication should be administered under the guidance of a doctor.)

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
49sec home-news-image

The role of calcium agents in hyperkalemia

Change the excitability of autonomic cells to protect the heart. Hyperkalemia mainly affects the conduction of the heart and neuromuscular system. Typical clinical manifestations include severe bradycardia, atrioventricular block, and even sinus arrest. By using calcium agents to change the excitability of autonomic cells, we can protect the heart from the damage to the conduction system caused by hyperkalemia. This allows the potassium ions to move from outside the cell to inside the cell. While protecting the myocardium, it is also necessary to use some medications to lower blood potassium. If the blood potassium is particularly high, dialysis or continuous bedside blood filtration can be used to reduce the blood potassium to a normal range.

doctor image
home-news-image
Written by Gan Jun
Endocrinology
1min 6sec home-news-image

What are the changes in urine output in hyperkalemia?

When patients experience hyperkalemia, urine output generally decreases, leading to reduced potassium excretion by the kidneys, typically accompanied by abnormal kidney function. Thus, as long as kidney function is normal and daily urine output exceeds 500 milliliters, hyperkalemia is usually rare. Some causes of reduced renal potassium excretion include decreased glomerular filtration rates and reduced potassium secretion by the renal tubules, commonly seen in acute and chronic renal failure, adrenal cortex insufficiency, low renin, low aldosterone blood conditions, renal tubular acidosis, and long-term use of diuretics, especially potassium-sparing diuretics. Additionally, β-adrenergic tissue agents and angiotensin-converting enzyme inhibitors can cause drug-induced hyperkalemia, leading to abnormal kidney function and, consequently, decreased potassium excretion by the kidneys, ultimately resulting in reduced urine output.