Which department to go to for hypokalemia?

Written by Wei Shi Liang
Intensive Care Unit
Updated on September 20, 2024
00:00
00:00

Hypokalemia is defined as having a blood potassium level below 3.5 mmol/L. In hospitals, when treating mild hypokalemia, it is essential to identify and treat the primary disease in the corresponding department, such as endocrinology, internal medicine, or gastroenterology. Additionally, timely oral potassium supplementation is necessary to correct the hypokalemia. If severe hypokalemia occurs clinically, with blood potassium levels less than 2.5 mmol/L, treatment in the intensive care unit is required. It is crucial to establish an intravenous access for potassium supplementation immediately. The rate of potassium supplementation should be slow, and blood potassium levels must be monitored continuously.

Other Voices

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
57sec home-news-image

How many days does hypokalemia need to be treated?

In the extracellular fluid of human cells, the concentration of potassium in the blood is 3.5 to 5.5 millimoles per liter. If the potassium level falls below 3.5 millimoles per liter, it is considered hypokalemia. The main causes of hypokalemia are insufficient intake and excessive excretion. The treatment duration for hypokalemia caused by different primary diseases varies. For mild hypokalemia, oral potassium supplements alone can correct the condition, but this generally takes about three to five days. For severe hypokalemia, intravenous potassium should be administered as soon as possible, preferably through a central venous line for fluid administration. At this time, the focus is on treating the underlying disease and timely supplementation of potassium ions. The duration of treatment may be relatively longer, and it is not possible to determine a specific timeframe.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 10sec home-news-image

Can people with hypokalemia smoke?

Hypokalemia is not directly related to smoking. However, once hypokalemia occurs, there is definitely an underlying disease. In the case that the primary disease is not controlled, it is advisable to avoid smoking. Potassium is an essential electrolyte for life, and its physiological functions mainly include maintaining cellular metabolism, regulating osmotic pressure, acid-base balance, and maintaining cell stress functions. Once hypokalemia occurs, active treatment should be implemented, primarily addressing the primary disease, symptomatic treatment with potassium supplementation, and avoiding the occurrence of hyperkalemia. The principle of potassium supplementation is that for mild hypokalemia without clinical manifestations, oral potassium should be given; in cases of severe hypokalemia, intravenous potassium supplementation should be administered immediately. Intravenous potassium should ideally not use peripheral veins but establish a central vein, and the speed of potassium supplementation and the monitoring of potassium levels should be controlled.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
51sec home-news-image

How to radically cure hypokalemia?

Hypokalemia must be treated with potassium supplementation while simultaneously addressing the primary condition. For mild hypokalemia, oral potassium can be given in doses of 40 to 80 mmol/day. In cases of severe hypokalemia, where blood potassium is less than 2.0 mmol/L or when life-threatening symptoms are present, intravenous potassium should be administered at a rate of 10 to 20 mmol/L per hour. Regular monitoring of blood potassium levels is necessary, especially in cases of renal dysfunction and cellular uptake impairment. For life-threatening severe hypokalemia, potassium can be administered via central venous lines with close monitoring of blood potassium levels, and the infusion rate can reach up to 40 mmol/L, which can effectively cure hypokalemia.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 19sec home-news-image

Hypokalemia can cause

Hypokalemia can manifest as weakness, a bitter taste in the mouth, lack of appetite, irritability, or mood swings. In severe cases, symptoms like nausea, vomiting, drowsiness, reduced orientation ability, and confusion may occur. In terms of muscle and nerve effects, hypokalemia leads to decreased neuromuscular excitability, and when blood potassium levels fall below 2.5mmol/L, clinical symptoms of muscle weakness appear. If blood potassium levels drop below 2.0mmol/L, flaccid paralysis and disappearance or weakening of tendon reflexes may occur. In severe cases, paralysis of the respiratory muscles and even respiratory failure might develop. For the gastrointestinal tract, common symptoms include lack of appetite, nausea, and vomiting, with severe cases leading to intestinal paralysis. Hypokalemia can cause an increase in heart rate and even ventricular fibrillation, which can be fatal. Additionally, it can result in metabolic alkalosis. Hypokalemia can cause metabolic alkalosis, and vice versa, with each condition potentially leading to the other, often coexisting simultaneously.

doctor image
home-news-image
Written by Wei Shi Liang
Intensive Care Unit
1min 1sec home-news-image

Clinical manifestations of hypokalemia

The clinical manifestations of hypokalemia are diverse, with the most life-threatening symptoms affecting the cardiac conduction system and the neuromuscular system. Mild hypokalemia on an electrocardiogram presents as flattened T waves and the appearance of U waves, while severe hypokalemia can lead to fatal arrhythmias such as ventricular tachycardia and ventricular fibrillation. In the neuromuscular system, the most prominent symptoms of hypokalemia are skeletal muscle flaccid paralysis and sustained smooth muscle tension, which can involve the respiratory muscles and lead to respiratory failure. Hypokalemia can also cause insulin resistance or hinder insulin release, leading to significant glucose tolerance abnormalities. Reduced potassium excretion decreases the kidney's ability to concentrate urine, resulting in polyuria and urine with low specific gravity.